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We see great value in making physical 

models as mathematical experiments…  
(Bryant, 2008) 

 
 
 Introduction  
 
This chapter is about the didactical and mathematical values behind the attempts to 
build up a GeoGebra model for a 3D-linkage representing a flexible cube, i.e. a 
cubic framework made up with bars of length (say) one and spherical joints in the 
vertices. Figure 1 displays two models of the cube: one made with GeoGebra and 
the other with Geomag1.   

       
 

Figure 1. The cube 
 

The importance of making physical models of geometric objects has been widely 
emphasized (Polo-Blanco, 2007); likewise, we would like to highlight the relevant 
opportunities that modeling with GeoGebra brings for doing and learning 
mathematics.  
 Next section provides arguments in this direction, and introduces the 
context, main concepts and issues involved in our experiment. Then, a detailed 
description of the modeling process (and its justification) is provided in a new 
section. We will like to remark the conjunction of GEOmetry and (computational) 
alGEBRA that is involved in this process. We end up this Chapter proposing 
further activities and gathering some Conclusions.  

                                                             
1 Geomag is a trademark licensed to Geomag SA. 
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 LINKAGES, DYNAMIC GEOMETRY AND GEOMETRY LEARNING  

Linkages 
 
Linkages and mathematics have been, for centuries, closely related topics. A lively 
account of some issues on this historical relation appears in the recent and 
wonderful book by J. Bryant and C. Sangwin (Bryant, 2008).  Drawing curves 
(even simple straight lines) with the help of mechanisms is an intriguing topic in 
which linkages and mathematics meet since the XVIII century. We refer to  
(Kapovich, 2002) for a modern treatment of these problems, including the proof of 
a statement conjectured by the Fields medalist W. Thurston on the universality of 
linkages: “Let M be a smooth compact manifold. Then there is a linkage L whose 
moduli space is diffeomorphic to a disjoint union of a number of copies of M”. It is 
perhaps remarkable to notice that some work by the Nobel Prize recipient J. Nash,  
is involved in this proof.  
 As complementary information, a visit to some web pages, such as those 
of the Kinematics Models for Design Digital Library (KMODDL)2, at Cornell 
University or to the Theatrum Machinarum3 of the Universita di Modena, is highly 
recommended.   
 Another, but closely related, issue of common interest for mathematicians 
and engineers is the study of the rigidity (and flexibility) of bar-joint frameworks. 
As stated in the introduction, in this chapter we will deal with a cube consisting on 
twelve inextendible, incomprenssible rods (of, say, length one) joined, but freely 
pivoting, at each of the eight vertices. More generally, we could consider other 
polyhedral frameworks. An important topic is, then, to decide when the given 
framework has some internal degrees of freedom (i.e. if it has more possible 
positions than those that are standard for all rigid bodies in R3, or in R2 if we are 
thinking of planar frameworks).  
 Famous mathematicians, such as Euler or Cauchy, have worked on 
diverse versions of this problem, and some conjectures on this context have only 
been settled in recent times (such as R. Connelly’s counterexample to the 
impossibility of constructing flexible polyhedral surfaces with rigid faces). See 
(Roth, 1981) for a readable account on this very active field of mathematical 
research, with applications, for instance, to the design of biomolecules. 
 Modeling a polyhedral cube as a bar-joint linkage, allows us to 
experiment with this kind of questions. First of all, if we have in our hands a 
physical model of a cube framework, it is evident that we can place it around in 
many different positions, without changing the distances between any pair of its 
(contiguous or not) vertices. This fact is common to all bodies in three-dimensional 
space and it is not difficult to verify that there are six parameters governing such 
displacements, since we can choose an arbitrary position (given by three 
coordinates in physical space) for one point O on the body, and then we can rotate 
the body as a whole around this point, with such rotation depending on the so-

                                                             
2 http://kmoddl.library.cornell.edu/ 
3 http://www.museo.unimo.it/theatrum/  



      GEOGEBRA ON THE ROCKS 

3 

called three (Euler) angles.  Thus we say that all bodies, even rigid ones, enjoy six 
degrees of freedom in R3. 
 Since we are mainly interested in the possible  “internal” displacements of 
the cube (those that change the relative position between some vertices, without 
breaking the linkage), we would like to discount, once and for all, those six 
“external” degrees of freedom. Thus, let us assume, as a convention, that we have 
fixed two contiguous vertices (vertices O and U in Figure 1, left) and that, 
moreover, vertex E is only allowed to move restricted to a certain plane (for 
instance, the horizontal plane containing O and U).  In this way we are taking care 
of six displacement parameters: three for fixing vertex O, two for fixing vertex U 
(since it is constrained to be on a sphere of center O and radius 1) and one for 
restricting E to be in the intersection of a sphere of center O and radius 1 and in the 
horizontal plane.  
 Still, is it possible to move the cube respecting this convention for O, U 
and E? The answer, obviously, is affirmative (see Figure 1, right) and, thus, we say 
the cube is non-rigid or that it is flexible.  But, how many parameters now rule, 
respecting this initial setting, the possible displacements of this framework? That 
is, how many internal degrees of freedom does it have? We will see that this 
question is highly related to the construction process of a GeoGebra model for our 
cube: its answer should guide the construction and, conversely, a successful 
construction should allow experimenting the existence of the different internal 
displacement parameters. 

Dynamic Geometry 

In fact, the above circular statement seems just another example of the need of 
mathematical insight to produce sound dynamic geometry resources, which, on the 
other hand, help developing mathematical insight into a geometric problem.  Yet 
we think there are some special circumstances in this context.  
 As it is well known, when opening a Dynamic Geometry worksheet for 
drawing some sketch there, we are following the traditional paper and pencil 
paradigm, replacing physical devices (ruler, compass, etc.) by different software 
tools. The relevant difference is that, in the Dynamic Geometry situation, we can 
benefit from a dragging feature, which is alien to the paper and pencil context.  
 Now, bar-joint linkages are physical constructions that include the 
dragging of some of its elements as an intrinsic feature. No one makes a linkage 
mechanism to let it stand still. In this sense we could think of Dynamic Geometry 
programs as specially fit to deal with linkage models.  A supporting argument 
could be a visit to some web pages displaying linkages modeled by dynamic 
geometry programs; we cannot refrain from suggesting the collection of Cabri-Java 
applets from one of our co-authors4, exhibiting an interactive collection of about 
one hundred mechanisms.  Wonderful GeoGebra linkages are displayed at some 
pages by C. Sangwin5 or by P. van de Veen6.    
                                                             
4 http://jmora7.com/Mecan/mecpral3.htm  
5

 http://web.mat.bham.ac.uk/C.J.Sangwin/howroundcom/front.html  
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 Modeling bar-joint frameworks through Dynamic Geometry software has 
some advantages, but also presents some difficulties, compared to the classical case 
of physical models. In fact, both approaches run smoothly when dealing with very 
simple polygonal or polyhedral figures. But when it comes to more elaborated 
items, such as the cube, it is not easy to keep the different pieces assembled, or to 
avoid collisions between the different bars and vertices (which, in physical reality, 
tend to be thick, far from being intangible lines and points), if one wants to model 
some complicated displacements. Our experience with physical models of cubes is 
that, either they have some relatively large dimensions (and this poses construction 
problems, for instance, with magnetic forces among different elements) or they 
tend to be less flexible than expected. Of course, none of these hardships arise with 
Dynamic Geometry models. 
 On the other hand, modeling linkages with Dynamic Geometry poses 
other kind of problems. For instance, it is difficult to model a four-bar planar 
linkage where all vertices behave similarly (that is, showing in a similar manner 
the degrees of freedom of the flexible parallelogram when one drags anyone of 
such vertices). Assume we fix two contiguous vertices (to consider only the 
internal degrees of freedom), say, O and U.  
 

 
Figure 2. A planar four-bar linkage 

 
Then the two remaining vertices, F, E, should have each one degree of freedom, 
but not simultaneously.  Dragging F, point E should move, and conversely. But a 
Dynamic Geometry construction tends to assign the shared degree of freedom to 
just one of them, depending on the construction sequence, and not to the other. 
Typically, if F is constructed first, we can drag it, then E will move; but we can not 
drag E…  To achieve an homogeneous behavior for E and F we have to use some 
tricks, such as assigning the degree of freedom to some external parameter and 
constructing E and F depending on it; or assign the degree of freedom to, say, one 
single extra point located in the bar joining the two semi-free vertices. It could 
seem artificial… but we consider that the reasoning required to explain and to 
circumvent such difficulties is, by all means, an excellent source of geometric 
thinking.  
 Last, but not least, we must consider the 3D issue…. Modeling a static 3D 
object with a Dynamic Geometry program (which has just a 2D display) poses 
already supplementary problems, not to mention those regarding modeling the 

                                                             
6 http://www.vandeveen.nl/Wiskunde/Applets%20Constructies.htm 
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movement of the 3D figure. Doing it, in particular, with GeoGebra, yet without a 
specific 3D version, is even more challenging.  Our experience in this respect is 
that by using GeoGebra algebraic features we have been able to simulate, 
reasonably well, 3D scenes and movements for the cube;  and to do so much better 
than using some other Dynamic Geometry program with specific 3D versions we 
have tried to use in this task. 

Geometry Learning 

In the previous two sections we have praised the mathematical importance of 
linkages and the potential role of Dynamic Geometry in modeling such objects. 
Here we will like to introduce some considerations about the pertinence of 
introducing linkages as a topic in High School/Undergraduate geometry (Recio, 
1998).  
 In many curricula, movements in the plane are introduced with a certain 
emphasis in their classification (translations, rotations, symmetries, etc).   We can 
say that movements are considered important for geometry learning, but mostly 
from a “qualitative” point of view, that is, learning about the different types of 
rigid movements and their distinctive properties. Now, it is a (mathematically) hard 
task to classify rigid displacements in the plane, very difficult (for school 
mathematics) to achieve it for 3D.  
 Linkages provide a different approach to work with movements in a 
“quantitative” and intuitive way: how many parameters rule the positions of a point 
in the plane? And, how many are needed for a triangle? Ditto, for any planar rigid 
shape? How can we translate this question to the case of a bar-joint framework 
modeling a triangle, a square, a rectangle, a carpenter rule, etc.? It is easy to reason, 
at an intuitive level, with such questions, and it is surprising to verify, by direct 
experimentation with GeoGebra-built linkages, how spatial intuition gets, 
sometimes, wrong… The case of a bar and joint cube framework is one of these 
models that provide rich learning situations, and this is one important reason 
behind our attempts to construct it.  
 Moreover, simple linkages give rise to complicated (yet classical) high 
degree curves, by studying the traces of some joints. As documented above, tracing 
curves through linkages is a lively topic, with many historic anecdotes and 
relations to technology, a quite appealing topic with lots of classroom activities. 
 Linkages provide, as well, a good model to understand, through the 
algebraic translation of the corresponding bar-joint framework construction (see 
next section for some detailed examples), systems of algebraic equations with an 
infinite number of (meaningful) solutions. This algebra-geometry dictionary that 
linkages naturally provide is, in our opinion, one important source of advanced 
mathematical thinking. And it is particularly close to GeoGebra basic conception, 
that of mixing Algebra and Geometry in a single tool. 
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MODELING A CUBE 

This section describes the problems and solutions behind our attempts to build a 
GeoGeobra model of a joint-and-bar cube.  

A planar parallelogram 

First we analyze the simpler case of a planar joint-and-bar parallelogram (Figure 2) 
with bars of length one.  We might consider fixing vertex O at the origin of 
coordinates and vertex U at point (1, 0) (in order to focus only on the internal 
degrees of freedom, those that add to the 3 degrees of freedom that, at least, have 
all planar bodies). Then, counterclockwise, vertex F and vertex E follow.  Point 
F=(Fx, Fy) must be on a circle centered at U and of radius 1. This means only one 
coordinate of F is free. Finally, point E can be constructed as the intersection of 
two circles (centered at F and O, respectively) of radius 1. It will have no free 
coordinates.  
 In summary, we obtain the following algebraic system: 
 
>R:=PolynomialRing([Ex,Ey,Fx,Fy]): 
>sys := {(Fx-1)^2+(Fy-0)^2-1, (Ex-Fx)^2+(Ey-Fy)^2-
1,(Ex-0)^2+(Ey-0)^2-1}; 
 
which can be triangularized, using Maple, as 
 
>dec := Triangularize(sys, R): map(Equations, dec, R); 
 
[[Ex-1, Ey, Fx^2-2*Fx+Fy^2], [Ex*Fx-Fx+Fy^2, Ey-Fy, 
Fx^2-2*Fx+Fy^2], [Ex^2+Ey^2-1, Fx, Fy]] 
 
 We obtain two degenerate solutions (the first and third system in the 
output above), corresponding to the cases E=U and F=O, and one regular solution,  
in which Fx is parameterized by Fy;  Ey is also parameterized by Fy; and Ex is 
parameterized by Fx and Fy (thus, by Fy alone). Therefore, algebraically, as well 
as geometrically, we see the parallelogram has just one internal degree of freedom.  
But this extra degree of freedom can be assigned to anyone of the coordinates of E 
or F, depending on the way we order the variables for triangularizing the system or 
depending on the sequence of the geometric construction.  
 If we build up a physical joint and bar parallelogram with one fixed side, 
we observe that we can move any of the two semi-free vertices.  Now, no Dynamic 
Geometry construction seems to achieve this, since the final vertex that is 
constructed in order to close the loop, has to be determined by the previously 
constructed vertices; thus only one of the two free vertices would be “draggable”…
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A spatial parallelogram 

Then we will deal with the slightly more complicated case of a 3D joint-and-bar 
parallelogram.   

 
Figure 3. A spatial four-bar linkage 

 
The most evident difficulty for GeoGebra to model this linkage is the lack of 3D 
facilities. We can circumvent this difficulty thanks to the algebra integrated in 
GeoGebra. We will associate to each tridimensional point (Px, Py, Pz) its 
projection (Qx, Qy) on the screen, this projection depending on some user-choice 
parameters alpha and beta (that represent different user perspectives), as follows: 
 

 

 
Once the user introduces, by clicking on some icon such as the two ellipses of 
Figure 4, 

 
Figure 4. Control icons 

 
the values of alpha and beta,  GeoGebra projects on the screen the corresponding 
values of the different tri-dimensional points that will be introduced through 
numerical coordinates. 
 Here we fix two adjacent vertices (say, O = (0,0,0) and U= (0,1,0)) and the 
plane (of equation z=0) where another vertex (say, E) should lie. In this way we 
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take care of the 6 common degrees of freedom for all 3D shapes. Therefore, the 
coordinates for E are 
 

E = (Ex, Ey, 0) 
 
Since E must be at distance 1 from O, these coordinates verify:  
 

Ex2 + Ey2 = 1 
 
That is, introducing a new parameter e: 
 

E = (-cos(e), sin(e), 0) 
 
This parametric representation can be achieved in GeoGebra by constructing a 
slider (see Figure 4) that will control angle e in order to move point E.    
 Now, concerning vertex F = (Fx, Fy, Fz), we observe that, being 
equidistant to E and U, it must be in a plane perpendicular to segment UE through 
the middle point Q of this segment. But this plane goes also through O, since OE 
and OU have same length. Therefore, the coordinates of F verify the following 
system of equations: {(Ex-0)^2+(Ey-0)^2-1, Ez,  (Fx-0)^2+(Fy-
(1))^2+(Fz-(0))^2-1,(Fx)*Ex+(Fy)*(Ey-1)+(Fz)*Ez}  and it is 
not difficult to see that eliminating all variables from this system, except those 
corresponding to the coordinates of F, one obtains just the sphere (Fx-
0)^2+(Fy-(1))^2+(Fz-(0))^2 =1.  
 A more geometric way of arriving to the same result could be the 
following. We observe that, for fixed E, point F describes a circle centered a Q and 
of  radius equal to k1 (see below for the value of this parameter).  
 

 
Figure 5. Determining F 

 
Parametrizing by a new angle f the position of F in this circle we get:  

 

where k1 y k2 are given by: 
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Thus we remark that there are, in total, two internal degrees of freedom (angles e 
and f), which are distributed between the two free vertices (one for each vertex), in 
the following sense: E moves on a circle and, for each position of E, F can be 
placed at whatever point of another circle (with center and radius depending on E’s 
position). From this description it is easy to deduce that the locus of all possible 
placements of F is a surface parameterized by circles of variable radius, centered at 
the different points of the circle displayed by the midpoint of EU. After a 
moment’s thought we check that such surface it is just the sphere centered at U, of 
radius 1, as expected. 

The Cube 

By considering the case of the spatial parallelogram as a basic building block, we 
can construct the cube by, first, adding to the parallelogram OUFE a new vertex A 
with two degrees of freedom (that is, lying on a sphere of given radius and centered 
at the fixed vertex O), represented by two parameters a and j. Parameter a allows 
the rotation of A around O with Ax constant; and the parameter j does the same, 
with Ay constant, that is: 
 

A = (Ax, Ay, Az) 
= (sin(j) cos(a), sin(a), cos(j) cos(a)) 

 
Next, from this vertex A, two other adjacent vertices B and D are constructed 
following the same steps as in the spatial parallelogram case. First, we determine D 
as the fourth vertex of the parallelogram OAED.  Following the arguments of the  
 

 
Figure 6. The cube 

 
previous section, for each position of E and A, point D will be parametrized by an 
angle d on a circle centered at the middle point M of segment AE 
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M =(Mx, My, Mz) = (E+A)/2 

  
Moreover D lies on a plane perpendicular to AE and containing O. Thus 
 

OD = OM + cos(d) OM + sin(d) |OM| n/|n| 
 
where n is the vector product of OM by EM, 
 

n = (Mz Ey, - Mz Ex, Mx(My - Ey) - My(Mx - Ex)) 
 
which is perpendicular to OD and to EA. 
 Likewise, we can determine now (that is, as the fourth vertex of 
parallelogram OUBA, assuming O, U and A are fixed) vertex B depending on a 
new parameter b: 
 

N =(Nx, Ny, Nz) = (U+A)/2 
m = (Nz, 0, -Nx) 
OB = ON + cos(b) ON + sin(b) |ON| m/|m| 

 
where N is the midpoint of UA and m is the vector product of ON by UN. 
 It remains to parametrize vertex J. We observe that, for given positions of 
O, U, E, F, A, B, D, this vertex must be on the intersection of three spheres of same 
radius, centered at F, B and D. Therefore, there are, at most, two possible (isomer) 
positions for J = (Jx, Jy, Jz). We obtain their coordinates by considering that EJ 
(and UJ) must be perpendicular to DF (to BF, respectively): 
 

(Jx-Ex)(Dx-Fx) + (Jy-Ey)(Dy-Fy) + Jz(Dz-Fz) = 0 
Jx(Bx-Fx) + (Jy-1)(By-Fy) + Jz(Bz-Fz) = 0 

 
The intersection of these two planes (remark that only the J-coordinates are 
unknown here) will be a line in the direction determined by the vector product of 
the normal vectors to these two planes.  Finally we look for the intersection points 
of this line with the sphere centered at F and or radius 1: 
 

(Jx-Fx)^2 + (Jy-Fy)^2 + (Jz-Fz)^2 = 1 
 
yielding the two possible positions of J. The resulting expression is too large to be 
reproduced here. 
 Figure 7 above displays the cube for some given, through the sliders on 
the top of the Figure, values of the parameters we have introduced in this section. 
The same values, for another isomer position of J, yield the cube at the position 
displayed on Figure 7, below.  
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Figure 7. Two isomers for same value of parameters 
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OPEN ISSUES AND CONCLUSIONS  

The construction of the cube model that we have described in the previous sections 
behaves quite well in practice. Setting the slides at different positions, the different 
vertices of the cube  —GeoGebra numerically computes their coordinates 
following the corresponding parametrization and then projects them onto the 
screen by performing some more arithmetical operations—are instantaneously 
placed at the expected positions.  Yet, we have to report that some “jumps” occur 
between isomer positions, near singular placements (for instance, when a=270º and 
parallelogram AOBU collapses). In view of the large bibliography on the 
“continuity problem” for Dynamic Geometry, it seems a non-trivial task to model a 
cube avoiding –if possible at all-- such behavior. 
 We remark that the cube we have modeled has six internal degrees of 
freedom, one for each free parameter we have introduced. But its distribution has 
not been homogeneous. For instance, the final vertex has been constructed without 
any degrees of freedom, by imposing some constraints (being simultaneously in a 
sphere and in two planes perpendicular to some diagonals). This fact –the difficulty 
to make a model where all semi-free vertices behave homogeneously—is 
apparently similar to the planar parallelogram case, but now we can not conclude 
that it is impossible to make such construction, since, after fixing O and U we still 
have six vertices and six degrees of freedom. It is, probably, a consequence of our 
approach and not an intrinsic characteristic. 
 In fact, we can think of the Dynamic Geometry sequential construction 
process as a kind of triangularization of the system describing a cube. In the planar 
parallelogram case the triangularization of the system yield always one semi-free 
vertex depending on the other one. In principle for a cube, a triangularization 
should be possible with one new free variable associated to each semi-free vertice, 
but the triangularization (or Gröbner basis computation) of the algebraic system 
describing the distance 1 constraints between some pairs of vertices of the cube 
seems not feasible (due to the complexity of the involved computations). If it 
would have succeeded computing automatically this general solution we could 
have shown automatically that, in fact, the cube has six (internal) degrees of 
freedom. Right now this important fact can be just proved by considering the 
specific sequence of solutions presented in our construction, depending on six 
parameters. In some sense, we see that attempting to build a model of a cube is an 
example where GeoGebra helps when symbolic computation fails. And, 
conversely, it shows how symbolic computation (for 3D coordinates) helps when 
current GeoGebra features fail. 
 Building a cube with GeoGebra provides excellent opportunities to learn a 
lot of mathematics at different levels. Some of them have been summarily 
introduced in the construction process (such as discussing why the intersection of 
three spheres has at most two points, or why vertex F in a spatial parallelogram 
moves on a sphere, etc.). Not to speak about the interaction of algebra (dimension 
of the algebraic variety defined by the cube’s equations, triangular systems, etc.) 
and geometry that is behind our construction. 
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 Moreover, different classroom exploration situations can be presented to 
work and play with the GeoGebra cube model, such as:  
 -Could you fix (say, by pasting some rigid plates) one, two… etc. facets in 
the cube and still have some flexibility on the cube? How many internal degrees of 
freedom will remain? 
 -For a planar parallelogram, one can feel the one-degree of freedom by 
checking that once you fix one semi-free vertex, the whole parallelogram gets 
fixed. Same for the spatial parallelogram (you have got to fix, one after another, the 
two semi-free vertices). For the cube, how can you “feel” its six degrees of 
freedom? Can you fix whatever five semi-free vertices and still move the cube? 
 The cube, its construction process and the model itself, seems to us an 
important source of both algebraic and geometric insight. And, most important, an 
endless source of fun thanks, as always, to GeoGebra. 
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