Mundo Matemático

La anomalía B°→K*°μμ observada por LHCb y su posible explicación

A Mula Francis - Ven, 2015-03-20 20:01

Rumor confirmado. La anomalía observada por LHCb en los ángulos de los productos de la desintegración B0→K*0μ+μ–, con K*0→K+π–, no ha desaparecido tras analizar 3 /fb de colisiones. Sin embargo, la significación estadística no ha crecido y sigue siendo 3,7 sigmas (para el parámetro P’5), igual que tras analizar 1 /fb de colisiones en 2013. Que no haya variado la significación implica que su origen no es estadístico, luego podría ser sistemático. La hipótesis más conservadora es asumir que no se está calculando bien la predicción del modelo estándar. Un efecto hadrónico podría ser la causa (al final de esta entrada lo explico para legos en la materia).

En la figura que abre esta entrada, el resultado más anómalo, asociado a la variable angular llamada P’5, se observa con 2,9 sigmas en los intervalos [4,6] y [6,8] GeV², que combinados implican 3,7 sigmas al 95% CL en los puntos negros con barras de error tras analizar 3 /fb de colisiones. Este resultado se compara con el resultado tras analizar 1 /fb en los puntos azules con barras de error. La predicción del modelo estándar (sin tener en cuenta ningún efecto hadrónico) está representada por los rectángulos naranja. Se observa que la anomalía persiste, pero no se hace más significativa .

Recomiendo consultar las transparencias de la charla de Christoph Langenbruch, “Latest results on rare decays from LHCb,” 50th Rencontres de Moriond Electroweak, in La Thuile (Italy), 20 Mar 2015 [slides PDF]. También las explicaciones teóricas más allá del modelo estándar de Joaquim Matias, “B to K(*)mu+mu-: theory interpretation,” 50 Moriond EW, 20 Mar 2015 [slides PDF], y dentro del modelo estándar de David Straub, “Implications of b→s measurements for model-building,” 50 Moriond EW, 20 Mar 2015 [slides PDF]; un resumen de este último en David Straub, “The B→K*μμ anomaly persists,” Blog personal, 20 Mar 2015.

En el modelo estándar la desintegración B→K*μμ está asociada a un diagrama de Feynman de tipo pingüino para la desintegración de un quark bottom en un quark strange (o down), vía un bucle que involucra una corriente neutra; o bien un quark top y un bosón W que emite un bosón Z (o un fotón) que se desintegra en un par de leptones, o bien un bosón W y un quark top que emite un bosón Z (o un fotón) que se desintegra en un par de leptones; por supuesto, también se dan los diagramas correspondientes a intercambiar partículas y antipartículas. Estos diagramas están fuertemente suprimidos en el modelo estándar y por ello se trata de modos raros (poco probables) de desintegración de un hadrón B (tanto mesón B como barión Λb).

La tasa de desintegración (branching ratio) del proceso B→K*μμ coincide con la predicción del modelo estándar, como han confirmado LHCb, Belle, BaBar y otros detectores. Sin embargo, en el año 2013 se acometió un curioso estudio de los ángulos de salida de los productos de la desintegración (los dos muones y los dos mesones, pión y kaón).

Por las leyes de conservación del momento los dos muones aparecen en un plano con cierto ángulo respecto a la dirección del mesón B (sea θl), los dos mesones aparecen en otro plano con un segundo ángulo (sea θK*) y entre ambos planos habrá un tercer ángulo (sea ϕ). En el modelo estándar (QCD) estos tres ángulos dependen de ocho parámetros del lagrangiano a baja energía llamados FL, AFB, S4, S5, …, S9. En LHCb ha observado la anomalía al estudiar las combinaciones P’4,5 = S4,5/√(FL (1−FL)), sobre todo en P’5 (ver figura que abre esta entrada). Omito todos los detalles técnicos (que sólo tiene interés para quien ya conoce estos detalles). Pero no me resisto a destacar que la predicción del modelo estándar para esta anomalía es muy difícil de calcular con precisión porque depende de ocho parámetros.

¿Qué explicación puede tener la anomalía observada por LHCb? Obviamente, todo el mundo desea que se trate de física más allá del modelo estándar. Matias en su charla apunta a un bosón Z’, pero hay muchas otras. Sin embargo, Straub apunta a una explicación más prosaica, no se ha calculado bien la predicción del modelo estándar. ¿Por qué? Por la presencia de los leptones (muones en este caso) durante la hadronización de los productos. Efectos QED que no se han tenido en cuenta en el cálculo QCD. No es fácil realizar estos cálculos. Por ello la sugerencia de Straub no es la explicación definitiva. Pero ya se sabe que afirmaciones extraordinarias (nueva física) requieren evidencias extraordinarias (más fuertes que una simple anomalía). A petición, trataré de explicar sin usar términos muy técnicos cuál es la explicación propuesta por Straub.

La cromodinámica cuántica (QCD) es una teoría mucho más complicada que la electrodinámica cuántica (QED). Explica la interacción entre los quarks (los únicos fermiones con carga de color) mediada por ocho gluones de manera similar a la interacción entre fermiones cargados (quarks y leptones) mediada por fotones. Sin embargo, se diferencia por la libertad asintótica, la fuerza de color entre quarks aumenta con la distancia en lugar de disminuir, y por el confinamiento, todos los quarks se hadronizan formando partículas compuestas neutras para la carga de color (bariones y mesones).

La hadronización es un fenómeno muy rápido (en la escala de los yoctosegundos, 10–24 s) que sufren todos los quarks (excepto el quark top cuya vida media es de unos 0,5 yoctosegundos). Esta figura de Tommaso Dorigo muestra la desintegración de un bosón Z en un par quark-antiquark (rojos) que se hadronizan formando un rosario de cuatro mesones. El quark y el antiquark excitan el vacío del campo de gluones y aparecen a su alrededor gran número de gluones virtuales de alta energía. Estos gluones virtuales se desintegran en pares quark-antiquark virtuales. Uno de estos pares virtuales se transforma en un par real (no virtual) que se acopla a la pareja de quarks originales formando un par de mesones. En las colisiones de alta energía este proceso ocurre varias veces hasta que los mesones resultantes están suficientemente alejados entre sí para que el campo de color entre ellos sea despreciable. En la hadronización, en pocos yoctosegundos, todo quark (antiquark) queda revestido por un campo de gluones y pares quark-antiquark virtuales formando un mesón (o un barión).

La imagen naïve es que un mesón está formado por un quark y un antiquark (llamados de valencia). Y que un barión está formado por tres quarks de diferente color. Sin embargo, habrás oído que la masa de un protón es cien veces mayor que la masa de sus tres quarks de valencia; lo mismo le pasa a todos los hadrones. Un protón está formado por infinidad de gluones virtuales de alta energía (unas cincuenta veces mayor que la masa de un quark), que producen infinidad de pares quark-antiquark virtuales. En cierto sentido un protón es como una gota de agua y está formado por un mar de quarks, antiquarks y gluones. A más energía, más complicado es un protón. Lo mismo le ocurre a los mesones B.

En los cálculos de las predicciones del modelo estándar para los mesones B se asume que toda la complejidad de un mesón se reduce a un factor de forma (una relación entre la energía promedio y el momento promedio de todos sus constituyentes). Cuando se calculan los ángulos de salida de los productos en la desintegración B0→K*0μ+μ–→K+π–μ+μ–, se asume que un quark bottom se desintegra en uno strange mediante un diagrama de pingüino de tipo b→s μ+μ–, modelando toda la complejidad hadrónica de estos mesones usando el correspondiente factor de forma. Una simplificación necesaria para un cálculo que de otra manera sería casi imposible de realizar.

El efecto hadrónico que propone Straub consiste en considerar que la hadronización influye en el vértice b→s μ+μ–, es decir, que no es un vértice tipo pingüino limpio, sino que hay pares virtuales quark-antiquark (tipo charm, por ejemplo) que influyen en este vértice alterando de forma efectiva los ángulos de salida de los leptones (muones en este caso). El cálculo de este efecto hadrónico es muy complicado y Straub no es capaz de realizarlo. Si su intuición es correcta este efecto sería independiente de la energía asociada al factor de forma del mesón.

Para apoyar su hipótesis, Straub compara los resultados experimentales de LHCb para un coeficiente técnico llamado coeficiente de Wilson C9. No quiero entrar en detalles técnicos, pero la existencia de nueva física implica que este coeficiente depende fuertemente de la energía. Los nuevos resultados de LHCb apuntan a que este coeficiente no depende de la energía (la incertidumbre es grande, pero Straub afirma que es constante con una sigma de significación estadística). Por tanto, en su opinión, un efecto hadrónico podría explicar dentro del modelo estándar la anomalía observada por LHCb.

Estimado lector, si has llegado a este punto quizás necesites una aclaración para legos sobre este asunto. Permíteme abusar del lenguaje y de las analogías físicas por un momento. Un mesón B es parecido a una gota de un líquido polar (como el agua). Los ángulos de los productos de su desintegración dependen de la forma esta gota. Las predicciones del modelo estándar usadas por LHCb se basan en asumir que la gota es esférica. La idea de Straub es que la presencia de los leptones (muones) entre los productos de desintegración produce una atracción electromagnética a la gota polar que la deforma. Llama a este efecto hadrónico porque ocurre durante la hadronización de los productos, pero no es un efecto QCD puro que se pueda incorporar como un cambio en el factor de forma. Como resultado el mesón B se comporta como una gota alargada y los ángulos de salida de los productos difieren de las predicciones para una gota esférica. Sin embargo, la tasa de desintegración no se ve afectada, pues no depende de la forma de la gota. He forzado un poco la analogía, pero espero que aclare un poco el asunto.

En resumen, la anomalía observada por LHCb dará que hablar bastante en los próximos años, pero bien podría ser resultado de un cálculo incorrecto de la predicción teórica para los ángulos de salida de los productos. Tanto si su origen es nueva física, como si se trata de un efecto de alto orden en el modelo estándar, gracias a esta anomalía aprenderemos muchas cosas sobre la física de los mesones B. Al fin y al cabo de ese se trata, de entender cada vez mejor la Naturaleza de nuestro universo.

La entrada La anomalía B°→K*°μμ observada por LHCb y su posible explicación fue escrita en La Ciencia de la Mula Francis.

Entradas relacionadas:
  1. Nuevo rumor sobre la anomalía B°→K*°μμ en LHCb
  2. Algunos resultados del LHC del CERN y del Tevatrón del Fermilab presentados en el congreso HCP2010 en Toronto
  3. Qué tiene que decir el LHC sobre dos anomalías detectadas en el Tevatrón
Categorías: Mundo Matemático

Nuevo rumor sobre la anomalía B°→K*°μμ en LHCb

A Mula Francis - Xov, 2015-03-19 20:09

Nuevo rumor en física de partículas. El análisis que publicará mañana en la conferencia Moriond la colaboración LHCb confirma, tras analizar 3 /fb de colisiones, la anomalía observada a 3,7 sigmas en la distribución angular de los cuatro productos de la desintegración B0 → K*0 μ+μ–, donde K*0(892) → K+π−, tras analizar 1 /fb de colisiones. Ha lanzado este rumor en Twitter el físico Adam Falkowski, aka Jester (@Resonaances), autor del blog Résonaances, gran aficionado a la rumorología.

Muchos físicos interpretan esta anomalía como la primera señal firme de la existencia de física más allá del modelo estándar en la escala electrodébil. Por ahora debemos ser cautos. Te preguntarás, ¿qué nueva física explica dicha anomalía? Hay al menos 331 posibilidades (entre ellas diferentes modelos supersimétricos).

Por supuesto, saldremos de dudas sobre el rumor mañana viernes 20M (más conocido como el día del eclipse) a las 08:30 en la charla de Christoph Langenbruch (Univ. Warwick), “Latest results on rare decays from LHCb,” 50th Rencontres de Moriond EW 2015, La Thuile, Italia [slides ASAP]; las implicaciones teóricas respecto al modelo estándar nos las contará Joaquim Matias (Univ. Autónoma Barcelona), “B to K(*)mu+mu-: theory interpretation,” 50th R. Moriond EW 2015 [slides ASAP]. Recuerda que ASAP significa “as soon as possible” (pondré el enlace cuando estén disponibles las transparencias).

El artículo que descubrió la anomalía es LHCb Collaboration, “Measurement of form-factor independent observables in the decay B0→K∗0μ+μ−,” Phys. Rev. Lett. 111: 191801, 2013, doi: 10.1103/PhysRevLett.111.191801, arXiv:1308.1707 [hep-ex]. En el blog de Jester puedes leer “On the latest anomaly in LHCb,” Résonaances, 26 Aug 2013; y “Persistent trouble with bees,” Résonaances, 25 Feb 2015.

El bosón pseudoescalar B0 está formado por una pareja quark-antiquark de tipo down-antibottom (anti-b–d). El mesón vectorial K*0(892) está formado por una pareja de quark-antiquark de tipo down-antistrange (anti-s–d). Si se confirma la anomalía, la explicación más sencilla es que hay una partícula que produce el par muón-antimuón (μ–μ+) que media entre el los quarks anti-b y anti-s. Por supuesto, también se observa la desintegración asociada en la que todas las partículas se cambian por sus correspondientes antipartículas (omito los detalles).

La desintegración B → K*μμ (omito superíndices para abreviar) es bastante rara; un mesón B se desintegra de esta manera una vez cada diez millones. Esta desintegración ha sido estudiada en los detectores de diferentes colisionadores (DZero y CDF en el Tevatrón, y ATLAS y CMS en el LHC) sin que se observara ninguna anomalía. Sin embargo, LHCb ha realizado un análisis de los tres ángulos de emisión entre las cuatro partículas producidas (recuerda μ+ μ– K+ π−). Este tipo de análisis que permite LHCb no es nada fácil de realizar en otros detectores, por ello la anomalía ha sido observada en LHCb y no en los demás.

LHCb tras analizar 1 /fb de colisiones observó la anomalía respecto a la predicción del modelo estándar a 3,7 sigmas (en esta figura los datos en el rango 4,3≤ q² ≤ 8,7 GeV²). Sin embargo, si se tiene en cuenta el efecto LEE (look-elsewhere effect) la significación se reduce a 2,5 sigmas (o incluso menos). Por ello muchos teóricos esperan que LHCb confirme la anomalía con más de 5 sigmas (sin LEE) tras analizar 3 /fb de colisiones, de tal forma que incluso teniendo en cuenta el LEE la señal apunte a nueva física. Ya veremos qué pasa mañana viernes.

¿Qué puede dar lugar a esta anomalía? La existencia de una partícula intermedia que sea responsable de la producción del par muón-antimuón. Hay cientos de alternativas. Una posibilidad bastante atractiva es un bosón vectorial Z’ con una masa de unos 2 TeV (y que por tanto ha escapado a su búsqueda en CMS y ATLAS hasta el momento); más detalles en Rhorry Gauld, Florian Goertz, Ulrich Haisch, “An explicit Z’-boson explanation of the B->K*mu+mu- anomaly,” JHEP 1401: 069, 2014, doi: 10.1007/JHEP01(2014)069, arXiv:1310.1082 [hep-ph]. Pero hay tantas alternativas que decantarse por una ahora mismo es muy aventurado.

El lagrangiano del modelo estándar sólo incluye operadores con dos fermiones. Se espera que todo modelo de física más allá del modelo estándar se pueda aproximar por una teoría efectiva que añada a éste operadores con cuatro o con seis fermiones. Hay muchísimos modelos con cuatro fermiones que explican la desintegración anómala de bosones B observada por LHCb. Sin más datos es imposible decantarse por ninguno.

En resumen, mañana sabremos algo más, pero lo que no debemos olvidar es que la nueva física se nos mostrará en pequeñas anomalías que irán creciendo poco a poco. Pequeñas señales que apuntarán a no se sabe muy bien qué, pero que serán el primer indicio de algo más. Nadie debe esperar que la nueva física entre como un elefante arrasando en una cacharrería.

La entrada Nuevo rumor sobre la anomalía B°→K*°μμ en LHCb fue escrita en La Ciencia de la Mula Francis.

Entradas relacionadas:
  1. Este fin de semana se ha obtenido un nuevo récord de luminosidad en el LHC del CERN que avanza viento en popa
  2. Qué tiene que decir el LHC sobre dos anomalías detectadas en el Tevatrón
  3. El estado actual de la resonancia Y(4140) en el espectro J/ψφ
Categorías: Mundo Matemático

El redescubrimiento del Higgs en LHCb durante el LHC Run 2

A Mula Francis - Xov, 2015-03-19 01:41

El bosón de Higgs ha sido descubierto en los detectores ATLAS y CMS del LHC en el CERN. Entre los otros cinco detectores del LHC sólo podemos esperar que LHCb redescubra el Higgs en el LHC Run 2. El detector Large Hadron Collider Beauty (LHCb) está diseñado para estudiar los mesones B (partículas compuestas de quarks bottom), pero también puede detectar con precisión las desintegraciones con leptones tau (τ). Gracias a ello podrá redescubrir el Higgs en el canal de desintegración H → ττ, porque el canal H → bb tiene una relación señal/ruido pésima. Más tarde podrá detectarlo también en los canales HW → bb+lν, y HZ → bb+ll.

Hasta ahora sólo se ha publicado la búsqueda del Higgs en LHCb en el canal H → ττ usando colisiones a 7 TeV c.m. del LHC Run 1 (figura que abre esta entrada). Aún está lejos de un descubrimiento. La búsqueda para colisiones a 8 TeV c.m. aún no ha sido publicada, pero tampoco permitirá un redescubrimiento del Higgs. Habrá que esperar al análisis de las colisiones del LHC Run 2, es decir, hasta el verano de 2018. Aún así, será una gran noticia que se adelante este redescubrimiento a finales de 2017.

Más información en Philip Ilten, “Electroweak and Higgs Measurements Using Tau Final States with the LHCb Detector,” PhD thesis [255 pp], CERN-THESIS-2013-252, arXiv:1401.4902 [hep-ex]; Julien Rouvinet, “Title Search for (Higgs-like) bosons decaying into a pair of long-lived exotic particles in the LHCb experiment,” PhD thesis [117 pp], CERN-THESIS-2014-081.

El artículo ya publicado es LHCb collaboration, “Limits on neutral Higgs boson production in the forward region in pp collisions at s√=7 TeV,” Journal of High Energy Physics 2013: 132, 2013, doi: 10.1007/JHEP05(2013)132, arXiv:1304.2591 [hep-ex].

El detector LHCb es un detector situado en el punto 8 del túnel del LHC (donde estuvo el detector DELPHI en el LEP). Tiene ∼ 20 metros de largo (eje z) y unos ∼ 10 metros de ancho (ejes x e y). LHCb está optimizado para estudiar la física de los hadrones B, formados por algún quark bottom. El objetivo es la violación de la simetría CP y otros fenómenos raros en estos hadrones. Como la gran parte de los bosones de Higgs producidos en el LHC (del orden del 30%) se emiten en ángulos polares pequeños, cabría esperar qeu sus productos deberían ser fácilmente observables por LHCb (que acepta pseudorrapideces entre 1,8 < η < 4,9).

Los hadrones B tienen una vida media corta, τB ∼ 1,5 × 10−12 s, luego se observan como chorros hadrónicos. La desintegración más probable de un Higgs con 125 GeV es en una pareja de quarks bottom H → bb (un par bottom-antibottom). Sin embargo, este canal tiene mucho ruido en todos los detectores del LHC, ya que se producen un enorme número de pares bb en cada cruce de haces de protones. Por ello, observar la desintegración de un Higgs en un par bottom-antibottom en el detector LHCb es casi imposible. La relación señal/ruido es pésima (el fondo de ruido, los sucesos que producen pares bb, es enorme).

En el detector LHCb se pueden detectar los chorros hadrónicos asociados a los quarks bottom producidos por el bosón de Higgs si se aprovecha la producción conjunta con un bosón vectorial, un par HW o uno HZ. La razón es que los leptones (sobre todo muones y electrones) en la desintegración del bosón W o Z producido junto al Higgs es fácil de detectar y permite mejorar mucho la relación señal/ruido (el número de eventos de ruido se reduce muchísimo). Por supuesto, los canales HW → bb+lν, y HZ → bb+ll, también tienen un fondo de ruido, los sucesos ZW → bb+lν, y ZZ → bb+ll, entre otros. Aún así la relación señal/ruido es muchísimo mejor que en la detección vía el canal H → bb.

En resumen, el redescubrimiento del Higgs en LHCb será una de las grandes noticias del LHC Run 2. Pero será necesario esperar a que se acumule un buen número de colisiones a 13 TeV c.m. Alcanzar cinco sigmas para el Higgs en LHCb se logrará en algunos años. Estaremos atentos.

La entrada El redescubrimiento del Higgs en LHCb durante el LHC Run 2 fue escrita en La Ciencia de la Mula Francis.

Entradas relacionadas:
  1. El Higgs podría descubrirse gracias al roce de dos protones que no lleguen a chocar
  2. El Higgs “fermiofóbico” y los rumores para San Fermín sobre el Higgs en el ICHEP 2012
  3. Lo que sabemos sobre el bosón de Higgs
Categorías: Mundo Matemático

Restricción experimental a la escala de energía de la espuma cuántica de Wheeler

A Mula Francis - Mar, 2015-03-17 18:15

John Wheeler propuso que el espaciotiempo en la escala de Planck es una espuma cuántica. Una teoría cuántica de la gravedad que describa esta espuma cuántica debería violar la simetría de Lorentz de la teoría de la relatividad. Para explorar esta espuma cuántica, Giovanni Amelino-Camelia y varios colegas propusieron en 1998 estudiar la relación energía-momento para un fotón que haya recorrido distancias muy grandes, es decir, estudiar si la velocidad de un fotón en el vacío depende de su energía (no es constante).

Gracias al telescopio espacial de rayos gamma Fermi LAT (Large Area Telescope) se han estudiado los fotones emitidos por el brote intenso de rayos gamma GRB 090510. No se observa que la espuma cuántica introduzca ninguna dependencia aleatoria de la velocidad de los fotones con la energía que siga una distribución normal al menos hasta una energía de 2,8 EPl al 95% CL (1,6 EPl al 99%). Recuerda que EPl es la energía de Planck EPl ~ 1.22 × 1019 GeV. Por tanto, no hay indicios de la existencia de espuma cuántica en la escala de Planck, recuerda LPl ~ 1.62 × 10−33 cm.

Nos lo cuenta Agnieszka Jacholkowska, “Quantum gravity: Spacetime fuzziness in focus,” Nature Physics, AOP 16 Mar 2015, doi: 10.1038/nphys3293; que se hace eco de Vlasios Vasileiou et al., “A Planck-scale limit on spacetime fuzziness and stochastic Lorentz invariance violation,” Nature Physics, AOP 16 Mar 2015, doi: 10.1038/nphys3270.

Cada escala de distancias tiene asociada una escala de energía; por ejemplo, LPl está asociada a EPl. La espuma cuántica a cierta escala de distancias debería introducir una variación aleatoria de la velocidad de los fotones en el vacío v(E) = c + δv(E), donde δv(E) es una variable aleatoria que se distribuye de forma normal (gaussiana). Por tanto, los momentos de llegada (T) de fotones emitidos por una fuente lejana deberían presentar una distribución T+δT(E), donde δT(E) es una variable aleatoria también distribuida de forma normal.

Gracias a ello se puede explorar una teoría cuántica de la gravedad que prediga una espuma cuántica hasta cierta escala de energía estudiando los fotones emitidos por brotes intensos de rayos gamma (GRB). Uno de los más intensos es GRB090510 que tiene desplazamiento al rojo z = 0,903 ± 0,001. Su duración fue muy corta ~1 s, pero produjo fotones de muy alta energía (hasta ~31 GeV), con una curva de luz que muestra una estructura temporal fina con picos separados ~10 ms.

Se observaron 316 fotones con energía menor de Eth = 300 MeV y 37 fotones con energía más grande. Comparando la curva de luz con simulaciones por ordenador se puede estimar la cantidad w(z) = δT(E)/E. El intervalo de confianza se calcula usando el método de Feldman–Cousins. Esta figura muestra el valor medido de la dispersión (wbest) para cada valor de la dispersión teórica (w). El resultado obtenido es wbest < 0,013 (0,023) s/GeV al 95% (99%). A partir de este valor se obtiene el límite de energía 2,8 EPl para la escala de energía asociada a la espuma cuántica.

Por cierto, te recuerdo que en teoría de cuerdas es invariante Lorentz a todas las energías y todas las distancias. Gracias a la simetría del espejo (mirror symmetry) entre variedades de Calabi-Yau, las distancias R>LPl y 1/R< LPl son equivalentes (cuando R=1 es la escala de Planck). La invarianza Lorentz se cumple a todas las escalas y no existe ninguna espuma cuántica que afecte a la velocidad de los fotones.

Por tanto, el nuevo límite restringe otras teorías cuánticas de la gravedad, como la gravedad cuántica de lazos (LQG) y las teorías que suponen que el espaciotiempo es discreto. En dichas teorías existe una espuma cuántica que viola la invarianza de Lorentz (al menos a la escala de Planck). Para evitar el nuevo límite experimental hay que suponer que la dependencia de la velocidad de los fotones con la energía es superlineal (cuadrática o cúbica), estando suprimida la dependencia lineal (varias teorías, como LQG, se pueden ajustar para ello).

En resumen, un resultado experimental interesante que, aunque aporte poca información, apoya la teoría de cuerdas sobre sus competidores.

La entrada Restricción experimental a la escala de energía de la espuma cuántica de Wheeler fue escrita en La Ciencia de la Mula Francis.

Entradas relacionadas:
  1. Lisa Randall, las dimensiones extra del espaciotiempo y los resultados del LHC en el CERN
  2. La masa del fotón oscuro y la materia oscura
  3. “Twin Peaks” y la búsqueda del bosón de Higgs
Categorías: Mundo Matemático

Combinación oficial ATLAS+CMS para la masa del bosón de Higgs

A Mula Francis - Mar, 2015-03-17 14:16

El bosón de Higgs fue descubierto en el LHC por ATLAS y CMS de forma independiente. La combinación de los datos de ambos experimentos permite afinar sus propiedades. Hoy, por primera vez, se publica una combinación oficial LHC Run 1 para la masa del bosón de Higgs. La masa del Higgs es 125,09 ± 0,24 (0,21 estad. ± 0,11 sist.). Un resultado muy esperado que se ha hecho público en la conferencia 50th Rencontres de Moriond, La Thuile, Italia [programa].

La figura muestra los resultados de ATLAS y CMS para los canales H→ZZ→4l y H→γγ. La combinación LHC Run 1 reduce en gran medida la incertidumbre. Destacando la buena compatibilidad con las predicciones del modelo estándar.

La noticia nos la ha contado Cian O’Luanaigh, “LHC experiments join forces to zoom in on the Higgs boson,” CERN News, 17 Mar 2015. La charla es Michael Duehrssen (for the ATLAS and CMS collaborations), “Higgs combination,” 50th Rencontrs de Moriond, 17 Mar 2015 [PDF slides]. El artículo técnico estará disponible en ArXiv dentro de unos días.

Los datos de ATLAS y CMS son en gran medida compatibles entre sí. Como muestra el eje horizontal de esta figura la diferencia está por debajo de una sigma. Los datos combinados en los canales H→ZZ→4l y H→γγ también son compatibles entre sí por debajo de una sigma (ver eje vertical en esta figura).

Esta tabla/figura muestra más claramente las diferencias entre ambos canales y ambos experimentos. En el canal H→γγ la diferencia es de 2,1 sigmas y en el canal H→ZZ→4l de sólo 1,3 sigmas. Al combinar los datos de colisiones de ambos experimentos (lo que duplica el número de colisiones analizadas) se reducen estas diferencias hasta casi desaparecer. Un resultado espectacular donde los haya.

La combinación reduce la incertidumbre en la masa del bosón de Higgs a sólo el 0,19%. Un resultado realmente espectacular. Como se observa la medida está dominada por la incertidumbre estadística (el número de colisiones analizadas). Los errores sistemáticos (debidos a la teoría y la escala de energía) son más pequeños. No habrá un nuevo valor de la masa del Higgs hasta que el LHC Run 2 acumule suficientes colisiones (como pronto finales de 2016), por lo que hasta entonces podemos decir que la masa del Higgs es 125,09 ± 0,24 GeV.

Todavía no se han publicado los acoplos de Yukawa y los parámetros del Higgs obtenidos con la combinación ATLAS+CMS. La charla de Michael Duehrseen sólo presenta los nuevos resultados para ATLAS. En cualquier caso, queda claro por estas figuras separadas ATLAS (izquieda) y CMS (derecha) el buen acuerdo entre el Higgs observado y el Higgs predicho por el modelo estándar.

En resumen, combinar las colisiones de dos detectores diferentes no es trivial. Ha requerido varios años poder combinar ATLAS y CMS de forma oficial (de forma oficiosa se ha hecho muchas veces por mucha gente). Lo importante es que se ajusten los algoritmos para poder repetir este tipo de combinación oficial de forma periódica. El estudio de la física del Higgs en el LHC Run 2 promete ser apasionante.

La entrada Combinación oficial ATLAS+CMS para la masa del bosón de Higgs fue escrita en La Ciencia de la Mula Francis.

Entradas relacionadas:
  1. Se refuerza la señal del Higgs observada en ATLAS y CMS del LHC en el CERN
  2. Lo que sabemos sobre el bosón de Higgs
  3. El LHC observa el Higgs usando fermiones con 5,7 sigmas
Categorías: Mundo Matemático

Francis en #rosavientos: Oceános subterráneos en el Sistema Solar

A Mula Francis - Dom, 2015-03-15 20:43

Ya está disponible el audio del podcast de Eureka, mi sección en La Rosa de los Vientos de Onda Cero. Como siempre, una transcripción, unos enlaces y algunas imágenes.

Varios cuerpos del Sistema Solar parecen contener océanos subterráneos. Encélado, uno de los satélites de Saturno, oculta un océano con fuentes termales que calientan sus aguas, según los datos recogidos por la sonda Cassini de la NASA. Este océano subterráneo tiene unos 10 kilómetros de espesor y está cubierto por una corteza de hielo que, con un grosor de entre 30 y 40 kilómetros, que presenta fracturas por donde escapan géiseres. Se publica en Nature la observación de nanopartículas de sílice asociadas a la actividad hidrotermal. La noticia nos lleva a hablar de otros cuerpos del sistema solar con posibles oceános subterráneos, como Ganímedes y Europa, o incluso océanos hipotéticos como Ceres y Caronte.

La nueva noticia sobre Encélado nos la cuenta Gabriel Tobie, “Planetary science: Enceladus’ hot springs,” Nature 519: 162-163, 12 Mar 2015, doi: 10.1038/519162a; que se hace eco del artículo de Hsiang-Wen Hsu et al., “Ongoing hydrothermal activities within Enceladus,” Nature 519: 207-210, 12 Mar 2015, doi: 10.1038/nature14262.

Se han hecho eco de la noticia muchos medios, incluido Daniel Marín, “Las fuentes hidrotermales de Encélado y el futuro de la exploración espacial,” Eureka, 12 Mar 2015; “El océano subterráneo de Encélado esconde aguas termales,” Agencia SINC, 11 Mar 2015; José Manuel Nieves, “Confirman actividad hidrotermal en el fondo de los océanos de Encelado,” Ciencia, ABC, 12 Mar 2015.

Varios planetas y lunas de planetas del Sistema Solar tienen océanos subterráneos con agua líquida. No están en la zona de habitabilidad del Sol, donde se encuentran los planetas que pueden tener agua líquida en su superficie. Pero en la Tierra los fondos de los océanos son auténticos oasis de vida. ¿Podría haber vida en estos océanos subterráneos? Para la presencia de la vida similar a la que conocemos en la Tierra, que está basada en el carbono, es necesario que un planeta, además de agua líquida, tenga sustancias orgánicas complicadas. Saber si estas sustancias existen en el océano subterráneo de un planeta o de una luna de un planeta gaseoso es muy difícil. Esta semana ha sido noticia que Encélado, un satélite de Saturno descubierto en 1789 por William Herschel, muestra señales de actividad hidrotermal activa. Ya sabíamos que Encélado posee un océano subterráneo con agua líquida porque su superficie helada presenta grietas que dan lugar a géiseres activos en su polo sur y a la presencia de una tenue atmósfera. Pero ahora tenemos pruebas de actividad hidrotermal en el fondo de este océano subterráneo, la primera que hemos detectado fuera de la Tierra de este tipo de actividad geoquímica. Estas fuentes hidrotermales activas en el fondo de su océano indican que el interior de Encélado es mucho más caliente de lo que pensábamos.

El artículo científico se ha publicado en la revista Nature por el equipo de la misión espacial Cassini, un proyecto conjunto de la NASA y de la ESA que fue lanzado al espacio en 1997 y que está en órbita alrededor de Saturno desde junio de 2004. Encélado es un satélite de Saturno que se encuentra en el anillo más exterior de su sistema de anillos, el llamado anillo E. El instrumento Analizador de Polvo Cósmico (CDA por Cosmic Dust Analyser) a bordo de Cassini ha encontrado en el anillo E señales de sílice (dióxido de silicio). Se sabía que el anillo E estaba formado por partículas de hielo emitidas por los géiseres de Encélado. Pero se pensaba que estos granos estaban compuestos por silicio puro. El nuevo análisis de los datos de Cassini sugiere la presencia de granos de sílice de tamaño muy pequeño (su diámetro es menor de 10 nanómetros) por lo que los científicos creen que se han originado en reacciones hidrotermales con temperaturas superiores a los 90º C en el fondo del océano de Encélado.

Estos pequeños granos de sílice han llegado al anillo más exterior de Saturno gracias a los géiseres que se encuentran en el polo sur de Encélado. ¿Qué tienen de especial este granos para indicar actividad hidrotermal en su océano subterráneo? En la Tierra el proceso más común para formar pequeños granos nanométricos de sílice es mediante procesos hidrotermales con agua alcalina sobresaturada de sílice y con abundancia de sales. Estudios previos sugerían que el océano subterráneo de Encélado tenía un pH alcalino. Al tratarse de granos muy pequeños deben haber tardado poco tiempo, entre meses y años, en moverse desde el fondo del océano hasta su superficie, para luego abandonar Encélado hacia el anillo E a través de las fisuras de la corteza helada que hay en el polo sur (las llamadas ‘rayas de tigre’). En el polo sur la corteza de hielo tiene un espesor de unos diez kilómetros, mientras que en el resto del satélite alcanza los treinta o cuarenta kilómetros de grosor. Los científicos creen que los granos de sílice no provienen directamente del fondo del océano, sino que su origen es aún más profundo.

Los datos de la Cassini sugieren que el núcleo de Encélado es poroso, con una extensa región por debajo del océano de agua líquida en la que hay una mezcla entre agua y roca. La hipótesis hidrotermal se ve reforzada por la detección de metano (un compuesto orgánico) y de sodio en los géiseres. El metano debe producirse por mecanismos hidrotermales porque en otro caso quedaría atrapado en los hielos con volátiles de la corteza y los géiseres mostrarían poca cantidad de este compuesto. Además, el sodio indica es señal de agua líquida con sales disueltas en ella. Por ello se cree que las partículas de sílice encontradas se han originado en el océano y no en la corteza de hielo superficial. Por ello las pruebas a favor de la actividad hidrotermal son bastante sólidas.

Un gran actividad hidrotermal en el fondo de su océano subterráneo de la luna Encélado indica que su interior debe ser muy caliente. Pero Encélado es una luna de Saturno muy pequeña. ¿Cuál puede ser la fuente de calor interior en un cuerpo tan pequeño del Sistema Solar? La fuente de calor interior de Encélado es una de las muchas incógnitas que oculta esta luna de Saturno. Encélado se encuentra en una resonancia orbital 2:1 con otro satélite de Saturno llamado Dione, lo mismo que le ocurre a Io y Europa. Encélado completa dos órbitas a Saturno, cada una en unas 33 horas, por cada una que completa Dione. Esta resonancia proporciona una fuente de calor a la actividad geológica de Encélado. Además, las fuerzas de marea gravitatorias debidas a Saturno provocan que esta luna se estire y contraiga, calentándose en el proceso. Pero los cálculos indican que el calor producido por estos fenómenos no es suficiente para explicar la actividad observada en el polo sur de esta luna. Se requieren unos 16 megavatios y estos procesos podrían explicar sólo unos 2 megavatios. Por ello se cree que interior de Encélado debe contener más isótopos radactivos de lo esperado. La causa (o causas) del calentamiento de Encélado son un tema activo de investigación. Quedan muchas incógnitas por desvelar, pero el descubrimiento de actividad hidrotermal en Encélado es muy interesante desde el punto de vista astrobiológico. Hasta ahora, en el sistema solar exterior el lugar más sugerente era Europa, una luna de Júpiter, que tiene océano subterráneo más grande que el de Encélado, pero que mucho más difícil de estudiar. Una misión espacial hacia Encélado sería un apuesta muy firme para la búsqueda de posibles señales de vida en nuestro Sistema Solar.

Europa es una luna de Júpiter que presenta una océano subterráneo de agua líquida y una tenue atmósfera de oxígeno. Carl Sagan en su serie Cosmos ya planteó hace años que Europa podría ser habitable por formas de vida más complejas que simples microorganismos. ¿Qué sabemos sobre la posible existencia de vida en esta luna de Júpiter? Gracias a la misión espacial Galileo de la NASA, que concluyó en septiembre de 2003, sabemos que Europa es una luna de Júpiter que alberga un océano de agua líquida de unos 100 km de espesor bajo una gruesa capa de hielo de entre 10 y 30 km de grosor. Las observaciones del Telescopio espacial Hubble indican que Europa tiene una atmósfera muy tenue compuesta de oxígeno, pero se cree que su origen no es biológico. La luz del Sol y los rayos cósmicos que chocan contra la superficie helada de Europa producen vapor de agua que se divide en hidrógeno y oxígeno. El hidrógeno escapa a la gravedad de Europa, pero no así el oxígeno. El agua del oceáno de Europa podría tener una elevada concentración de oxígeno, incluso mayor que en nuestros océanos. Pero a día de hoy no tenemos evidencia de actividad hidrotermal en este océano y dicha actividad geológica es necesaria en la Tierra para la presencia de vida en los fondos de los oceános.

Por cierto, esta semana también ha sido noticia que Ganímedes, otra luna galileana de Júpiter, también podría tener un océano subterráneo con más agua salada que toda la que hay en la superficie de la Tierra. El descubrimiento se ha publicado en la revista Journal of Geophysical Research: Space Physics se basa en observaciones de las auroras en Ganímedes mediante el telescopio espacial Hubble. Las auroras son controladas por el campo magnético de la luna y su comportamiento ofrece información sobre su interior. El movimiento oscilatorio de las dos auroras del satélite sugiere que existe una gran cantidad de agua salada bajo la superficie helada que está afectando al campo magnético. De hecho, la misión Galileo de la NASA ya midió el campo magnético de Ganímedes en 2002 y presentó indicios que apoyaban la existencia de un océano subterráneo. Las nuevas observaciones se han realizado con luz ultravioleta gracias al telescopio espacial Hubble y permiten estimar que se trata de un océano de unos 100 kilómetros de espesor, diez veces más profundos que los océanos de la Tierra, pero que está enterrado bajo una corteza helada de unos 150 kilómetros. La posibles existencia de vida en los océanos de Europa y Ganímedes será difícil de verificar, pues se trata de océanos muy profundos bajo una gruesa corteza helada.

El artículo es Joachim Saur et al., “The search for a subsurface ocean in Ganymede with Hubble Space Telescope observations of its auroral ovals,” Journal of Geophysical Research: Space Physics, AOP 12 Mar 2015, doi: 10.1002/2014JA020778. Nos lo cuenta Eric Hand, “Huge ocean confirmed underneath solar system’s largest moon,” Science News, 12 Mar 2015.

En español puedes leer a Teresa Guerrero, “Ganímedes, la mayor luna de Júpiter, alberga más agua líquida que la Tierra,” Ciencia, El Mundo, 12 Mar 2015.

Una misión especial para explorar estos océanos subterráneos que están cubiertos por una gruesa corteza será muy costosa pues habría que usar algún tipo de taladro para poderlos explorar. ¿Hay otros océanos subterráneos más cercanos a nosotros o más fáciles de explorar en busca de vida? Hay varios cuerpos del sistema solar que podrían tener un océano subterráneo de agua líquida que aún no está confirmado. Por ejemplo, la mayor luna de Saturno, Titán, posee en su superficie lagos y ríos de metano, junto a una densa atmósfera de nitrógeno y metano, muy rica en hidrocarburos complejos. La superficie de Titán es por tanto uno de los lugares más fascinantes del Sistema Solar. La órbita de Titán no es perfectamente circular y durante los 16 días que tarda en girar alrededor de Saturno hay fuerzas de marea gravitatorias que deforman esta luna. Las mediciones gravimétricas de Titán aún no han detectado un gran océano subterráneo, pero la sonda espacial Cassini de la NASA ha detectado una deformación de la superficie por culpa de las mareas del orden de unos 10 metros. Algunos geofísicos piensan que es una señal de la presencia de una capa interior líquida. Un océano subterráneo que además de agua tendría grandes cantidades de metano y amoniaco. Se necesitan nuevos estudios para confirmar su presencia.

También se ha sugerido la presencia de un océano en Ceres, el asteroide más grande que se encuentra en el cinturón de asteroides entre las órbitas de Marte y Júpier, que ahora tiene categoría de planeta enano como Plutón. Se han observado manchas brillantes en la superficie de Ceres desde 2005. Se trata de emisiones de vapor de agua, pero no se sabe si su origen es el impacto de pequeños cometas heladas, o bien son emisiones cuyo origen es un océano de agua líquida bajo la superficie. Lo cierto es que las estimaciones de la densidad de Ceres indican que un tercio de su volumen debe ser hielo. Este hielo no puede ser sólido y se debe haber ido separando en capas. Una de ellas podría ser líquida y ser la responsable de las emisiones que se observan como manchas brillantes (como la pareja de manchas brillantes que hace un par de semanas se observaron en el centro de un cráter). Esta hipótesis es muy atractiva para los astrobiólogos ya que Ceres se encuentra mucho más cerca que la luna Europa de Júpiter y la luna Encélado de Saturno. Ceres podría ser más fácil de explorar y está claro que planificar un aterrizaje en su superficie es mucho menos costoso.

La sonda espacial Dawn de la NASA, que el 6 de marzo empezará a orbitar a Ceres, debe aclarar este misterio. Nos lo cuentan Eric Hand, “Dawn probe to look for a habitable ocean on Ceres,” Science 347: 813-814, 20 Feb 2015, doi:10.1126/science.347.6224.813; y Michael Küppers et al., “Localized sources of water vapour on the dwarf planet (1) Ceres,” Nature 505: 525-527, 23 Jan 2014, doi:10.1038/nature12918.

Más información divulgativa en Daniel Marín, “Ceres a 83 000 kilómetros de distancia,” Eureka, 17 Feb 2015; “Ceres a 46 000 kilómetros de distancia,” Eureka, 25 Feb 2015. Recomiendo leer a Lee Billings, “La nave Dawn observa manchas sobre el misterioso Ceres,” Scientific American (Español), 03 Mar 2015.

El planeta enano por excelencia es Plutón, que perdió la categoría de planeta en agosto de 2006. Este año la sonda espacial New Horizons de la NASA tomará órbita circular alrededor de Plutón para estudiarlo en detalle. ¿Podría haber algún océano subterráneo en Plutón o en alguna de sus lunas? Plutón es el planeta enano prototipo de la categoría de objetos transneptunianos denominada plutinos. Posee una órbita excéntrica y muy inclinada con respecto a la eclíptica, que incluso puede llegar al interior de la órbita de Neptuno (cuando se encuentra cerca de su perihelio). Que sepamos, Plutón posee cinco satélites: Caronte, Nix, Hidra, Cerbero y Estigia. Estos son cuerpos celestes que comparten la misma categoría. El satélite más grande de Plutón, Caronte, es la luna del sistema solar más grande en comparación con su planeta. Desde que se descubrió en 1978 se observó que, aunque Plutón tiene una masa siete veces mayor que Caronte, el baricentro de sus órbitas se encuentra fuera de Plutón; por ello se suele decir que forman un planeta binario o doble. Las fuerzas de marea gravitatorias entre ambos son muy intensas y de hecho Caronte y Plutón presentan siempre la misma cara el uno al otro. La superficie de Caronte presenta fracturas que parecen indicar que, al menos en el pasado, estuvo caliente y pudo albergar un océano de agua en estado líquido. La sonda espacial New Horizons de la NASA tomará órbita alrededor de Plutón en julio de este año y nos permitirá estudiar en detalle a Caronte y los otros satélites. Quizás se encuentre un oceáno líquido en su interior calentado por las fuerzas de marea gravitatoria. Hay muchos lugares del Sistema Solar que pueden tener océanos de agua líquida subterráneas o que los tuvieron en su pasado remoto, como el planeta Marte. Por ahora, Marte es el lugar más cercano en el que podría haber vida y el más fácil de estudiar. A día de hoy aún no podemos descartar la existencia de microorganismos. Marte sigue siendo una gran promesa para la exobiología.

La entrada Francis en #rosavientos: Oceános subterráneos en el Sistema Solar fue escrita en La Ciencia de la Mula Francis.

Entradas relacionadas:
  1. Gracias a la predicción teórica de una ocultación estelar se logra estudiar en detalle el planeta enano Eris
  2. Francis en ¡Eureka!: ¿Un cometa 15 veces más brillante que la Luna?
  3. Francis en #rosavientos: Materia oscura y extinciones masivas
Categorías: Mundo Matemático

Higgs pseudoescalares y anomalías experimentales en el LHC

A Mula Francis - Dom, 2015-03-15 13:13

La física del bosón de Higgs estudiada en el LHC con colisiones protón contra protón a 7 TeV y a 8 TeV se corresponde con las predicciones teóricas del modelo estándar. Ello no quita que se sigan buscando otros bosones escalares y pseudoescalares de tipo Higgs de mayor masa. La última búsqueda de CMS de bosones pseudoescalares ha encontrado un exceso a más de dos sigmas entre 350 y 400 GeV en el análisis de desintegraciones pp→A → Zγ → llγ (es decir, pp→eeγ, y pp→μμγ).

No se encontrado ningún exceso en los canales pp→A→γγ, y pp→A→WW, luego no puede tratarse del Higgs pseudoescalar predicho por las teorías supersimétricas. Pero hay varias teorías más allá del modelo estándar que predicen un bosón pseudoescalar pesado tipo Higgs (A) que se desintegra con preferencia en A → Zγ, suprimiendo fuertemente los canales A → γγ y A → WW.

El artículo técnico es The CMS Collaboration, “Search for scalar resonances in the 200–500 GeV mass range decaying into a Z and a photon in pp collisions at √s=8 TeV,” CMS-PAS-HIG-14-031, 06 Mar 2015 [PDF CDS]. También recomiendo el estudio previo de The ATLAS Collaboration, “Search for new resonances in Wγ and Zγ Final States in pp Collisions at s√=8 TeV with the ATLAS Detector,” Phys. Lett. B 738: 428-447, 2014, doi: 10.1016/j.physletb.2014.10.002, arXiv:1407.8150 [hep-ex].

Por supuesto, el análisis de señales de este tipo requiere usar un modelo teórico para la señal esperada, con el que se compara la señal observada. La figura que abre esta entrada muestra el exceso cuando se asume que la resonancia asociada al bosón pseudoescalar tipo Higgs es ancha (similar a la del propio Higgs del modelo estándar), con una anchura entre el 2-5%. Sin embargo, si se usa un modelo de este tipo pero con una resonancia estrecha, del orden del 1%, esta anomalía reduce su significación por debajo de dos sigmas, como muestra esta otra figura del mismo artículo.

Para ver mejor que el exceso es, casi con toda seguridad, de origen estadístico, basta mirar esta figura. El proceso pp→A → Zγ → llγ corresponde a la desintegración de un bosón pseudoescalar (A) en un bosón Z y un fotón (γ), con el bosón Z desintegrándose a su vez en un par electrón-positrón (ee) o en un par muón-antimuón (μμ). Este canal se estudia gracias a los eventos (sucesos) tipo pp→eeγ (figura de arriba) y pp→μμγ (figura de abajo). En la región entre 350 y 400 GeV se observa un pequeño exceso. Pero la verdad, cuesta verlo si no prestas atención. En mi opinión este exceso tiene un origen puramente estadístico; basta recordar que el efecto LEE (look-elsewhere effect) implica que se esperan fluctuaciones de esta magnitud en un rango de energía de 600 GeV. Como se esperan, encontrarlas no genera ninguna sorpresa.

Por supuesto, el artículo técnico de CMS omite hacer referencia a este pequeño exceso y considera que los datos son compatibles con la hipótesis nula (no existe un bosón pseudoescalar tipo Higgs entre 200 y 800 GeV). Más aún, cuando una búsqueda similar realizada por ATLAS en el rango entre 200 y 1180 GeV con 19,7 /fb de colisiones a 8 TeV tampoco encontró ningún exceso.

En resumen, hay muchas pequeñas anomalías en los datos del LHC Run 1 que habrá que seguir en los datos del LHC Run 2. Casi todas desaparecerán y caerán en el olvido. Pero quizás alguna sobreviva. Todos deseamos que el LHC Run 2 descubra algo nuevo que nos guíe hacia una descripción más realista de la Naturaleza.

La entrada Higgs pseudoescalares y anomalías experimentales en el LHC fue escrita en La Ciencia de la Mula Francis.

Entradas relacionadas:
  1. Lo que sabemos sobre el bosón de Higgs
  2. Sobre la posible violación del número leptónico gracias al bosón de Higgs
  3. Se refuerza la señal del Higgs observada en ATLAS y CMS del LHC en el CERN
Categorías: Mundo Matemático

Supersimetría y anomalías experimentales en el LHC

A Mula Francis - Dom, 2015-03-15 02:51

Muchos físicos esperan que el LHC encuentre la supersimetría a baja energía. Si la supersimetría se puede observar en las colisiones protón-protón a 13 TeV c.m. entonces debe haber señales de ella en las colisiones a 8 TeV c.m. Se han encontrado algunas pequeñas anomalías, la mayoría de menos de tres sigmas, que podrían tener un origen físico o bien un origen espurio. En el primer caso la significación estadística de las anomalías (su número de sigmas) debería crecer. En el segundo caso ocurrirá todo lo contrario, las anomalías tenderán a desaparecer.

Ya están disponibles las transparencias [en PDF] de las charlas de Les 29 Rencontres de Physique de la Vallée d’Aoste, Results and Perspectives in Particle Physics, La Thuile, 01-07 March 2015. Programa con transparencias en PDF.

Este listado de anomalías de baja significación aparecen en la charla de Carlos E.M. Wagner (Univ. Chicago), “Supersymmetry : Theory vs Experiment,” La Thuile Conference on Results and Perspectives in Particle Physics, La Thuile, Italy, 6 March 2015 [PDF slides]. Todas ellas podrían tener un origen supersimétrico, pero también podrían deberse a errores sistemáticos en la estimación teórica de la predicción del modelo estándar o bien a una fluctuación estadística en los datos de colisiones.

Mucho más sugerente es la discrepancia a 3,6 sigmas entre experimento y teoría para el momento magnético anómalo del muón. Partículas supersimétricas con carga similar a la del muón y con masa en la escala electrodébil (al alcance del LHC) podrían explicar (de forma natural) esta anomalía. Por ejemplo, tan β ≈ 10 sería una partícula supersimétrica con masa m ≈ 230 GeV (para tan β ≈ 50 sería m ≈ 510 GeV).

CMS también ha observado un exceso en las desintegraciones WZ en tres leptones cargados y un neutrino, aunque ATLAS no lo ha observado. Estimar bien el fondo de estas desintegraciones es muy importante para la búsqueda de señales de la supersimetría.

ATLAS ha observado un exceso en las desintegraciones WW en dos leptones cargados y dos neutrino, aunque CMS no lo ha observado. Casi todos estos excesos deben tener un origen sistemático, pues calcular en detalle el fondo de colisiones para desintegraciones con uno o varios neutrinos es difícil. Las estimaciones mejorarán mucho en los próximos años y la mayoría de estos excesos acabará desapareciendo. Aún así son muy sugerentes para los teóricos atrevidos.

Una revisión detallada de todas las pequeñas anomalías que se han observado nos llevaría lejos. Hay muchas asociadas a la física del Higgs y a los colisiones con muchos chorros (jets) tanto hadrónicos como leptónicos. Interpretar estas anomalías como señales de nueva física es sugerente, pero por ahora son señales de poca significación estadística. Casi con toda seguridad se trata de señales que acabarán desapareciendo. Espero equivocarme.

La entrada Supersimetría y anomalías experimentales en el LHC fue escrita en La Ciencia de la Mula Francis.

Entradas relacionadas:
  1. El bosón de Higgs tiene una masa de 120,7 GeV según predice el físico teórico John Ellis
  2. Hoy se anunciará en el CERN el descubrimiento del primer fermión supersimétrico de tipo Majorana
  3. Más limpio que una patena: el evento más limpio observado en el experimento CMS del LHC en el CERN
Categorías: Mundo Matemático

La belleza de las gotas danzantes

A Mula Francis - Xov, 2015-03-12 15:19

La física de fluidos es una de las ramas más bellas de la ciencia. Cosas cotidianas como el movimiento de las gotas de agua sobre una superficie plana pueden tenerte entretenido durante horas. Sobre todo si están compuestas de dos líquidos miscibles bien elegidos y tienen colores llamativos. Danzan cual bailarines con una coreografía hipnótica. Parece magia, pero es física.

Las gotas compuestas de propilenglicol y agua no presentan un ángulo de contacto con la superficie bien definido, sólo lo aparentan. Están rodeadas por una delgada capa de fluido que no se ve a simple vista. Gracias a ello hay fuerzas entre cada dos gotas debidas a los gradientes de tensión superficial inducidos por la evaporación en dichas películas líquidas. Un sistema fluidodinámico que presenta una amplia variedad de comportamientos y que puede tener aplicaciones en ingeniería de fluidos y de microfluidos.

El artículo técnico es N. J. Cira, A. Benusiglio, M. Prakash, “Vapour-mediated sensing and motility in two-component droplets,” Nature, AOP 11 Mar 2015, doi: 10.1038/nature14272. Muchos medios se han hecho eco de esta noticia, como mi amigo Antonio Martínez Ron, aka @aberron, “Jugando con gotas: una puerta a nuevas aplicaciones líquidas,” Next, Voz Pópuli, 11 Mar 2015.

Te recomiendo ver este vídeo, sobre todo a partir del minuto 06:00 donde se explica cómo repetir los experimentos en tu propia casa (si te apetece es muy fácil). Los profesores de física disfrutarán de ello pues se trata de un experimento fácil de emular en un laboratorio con pocos medios. Y los resultados son espectaculares.

Esta figura ilustra muy bien cómo las gotas usadas en el experimento están rodeadas de una película líquida delgada. Esta película induce fuerzas (interacciones) entre las gotas que dan lugar a diferentes comportamientos.

Este diagrama de fases muestra los diferentes tipos de interacción entre dos gotas (0.5 µl) con agua y cierto porcentaje de propilenglicol (% PG). Hay cuatro posibles comportamientos. Para entenderlos mejor recomiendo ver el vídeo de arriba (si no lo has visto ya). Por ejemplo, en rojo en este diagrama de fases aparece la fusión o coalescencia de gotas; por ejemplo, las dos gotas amarillas en la figura que abre esta entrada tienen un 10% PG. Por cierto, si se fusionan dos gotas de diferente color (sean amarillo y azul) se produce un cambio de color (verde). Otro ejemplo es el empuje sin mezcla (intact chase) que aparece en azul en el diagrama de fases; por ejemplo, las gotas azul (25% PG) y naranja (1% PG) en la figura que abre esta entrada. Una gota empuja a la otra sin que lleguen a mezclarse. Y de forma similar con los otros dos tipos de interacción.

Se pueden desarrollar gran número de dispositivos (micro)fluídicos. Los autores nos propones un alineador de gotas espontáneo (parte de arriba de la figura) y un oscilador vertical de gotas (parte de abajo de la figura). En el alineador horizontal se usan gotas verdes de 0.5 μl con 10% PG que se colocan en posiciones aleatorias separadas 5 mm con líneas verticales emtre ellas escritas con un marcador de punta fina y tinta permanente de color negro (marca Sharpie). En el oscilador vertical se usan gotas azules (25% PG) y rojas (1% PG) en una pista vertical de 4 mm (los fotogramas de las imágenes están separadas un segundo).

Esta figura muestra otros dos dispositivos: una pista de carreras circular (arriba) y un clasificador en función de la tensión superficial (abajo). En la pista circular la gota roja (1% PG) y la azul (25% PG) se mueven en una circunferencia de diámetro medio 2,1 cm (las tres imágenes están separadas por diez segundos). En el clasificador por tensión superficial se colocan varios pozos (pintados con rotulador Sharpie) que contienen gotas con concentraciones decrecientes 30% PG (rojo), 25% PG (naranja), 20% PG (amarillo), 15% PG (verde), 10% PG (azul) y 5% PG (negro). Esta configuración se inclina (en forma de plano inclinado) y se dejan caer gota de cierta concentración (y por tanto cierta tensión superficial). Caen por gravedad y se produce una coalescencia cuando se encuentran con una gota similar. Gracias a ello se puede estimar la tensión superficial de la gota que cae.

En resumen, un trabajo muy curioso y muy interesante, que puede tener múltiples aplicaciones en microfluidodinámica. La belleza de la física de fluidos nunca deja de sorprender.

La entrada La belleza de las gotas danzantes fue escrita en La Ciencia de la Mula Francis.

Entradas relacionadas:
  1. Se puede estudiar la gravedad cuántica utilizando átomos enfriados cerca del cero absoluto gracias a modificaciones de la fórmula E=mc²
  2. Resuelta la paradoja de la generación de rayos en tormentas de arena gracias a la neutralización de carga
  3. Qué significa nueva física más allá del modelo estándar
Categorías: Mundo Matemático

LHC 2.0: Infografía en Nature

A Mula Francis - Xov, 2015-03-12 13:53

2015 será el año del LHC 2.0. La revista Nature ha preparado esta infografía que puedes descargar en PDF para imprimirla a todo color. Ya hablé del arranque del LHC. Habrá haces de protones el 23 de marzo, día que se intentarán las primeras pruebas con colisiones. Hasta junio no habrá colisiones de interés, pues la intensidad (en rigor, luminosidad) será muy baja. En junio habrá colisiones con paquetes de protones separados 50 ns y habrá que esperar a mediados de julio para lo interesante (se separarán los paquetes a 25 ns). Este año será poco interesante para la física (el LHC volverá a descubrir todo el modelo estándar pero a 13 TeV c.m.). Si hay algo nuevo lo sabremos, como pronto, en diciembre.

Esta imagen muestra los cuatro experimentos más grandes del LHC, llamados ATLAS, CMS, ALICE y LHCb. Faltan otros tres más pequeños TOTEM (cerca de CMS), LHCf (a ambos lados de ATLAS) y MoEDAL (cerca de LHCb). Además del LHC, el CERN tiene decenas de experimentos (COMPASS, DIRAC, CLOUD, ACE, AEGIS, ALPHA, ASACUSA, ATRAP, ISOLDE, etc.).

El LHC Run 2 arrancará en 2015, pero lo interesante vendrá en 2016 y 2017 (finalizando a mediados de 2018). Se han realizado múltiples mejoras, siendo lo más importante que las colisiones serán más energéticas y más luminosas (mayor número de colisiones por segundo). Si todo va bien en el Run 2 se acumularán seis veces más colisiones que en el Run 1.

El LHC es una fábrica de quark top y el Run 2 nos permitirá estudiar mejor su física a alta energía. Esta infografía de Nature sugiere que también será una fábrica de bosones de Higgs. Por supuesto, también ayudará a estudiar mejor la física del bosón de Higgs, pero se requiere un colisionador específico para poder llenarse la boca con las palabras fábrica de Higgs. La física del sabor (sobre todo en LHCb) podría dar sorpresas interesantes (pues hay varios indicios de anomalías más allá del modelo estándar). En concreto, será muy interesante será la búsqueda de nuevas fuentes de asimetría CP, necesarias para explicar la bariogénesis y la asimetría materia-antimateria primordial.

Por supuesto, desde 1990, todo nuevo colisionador y todo nuevo Run de un colisionadot implica una nueva búsqueda de señales de la supersimetría. La gran esperanza oscura de la física de partículas, pues mucha gente cree que la partícula de la materia oscura es una partícula supersimétrica. Salvo por pura serendipia, no creo que se descubra la supersimetría en el LHC Run 2 (espero equivocarme). Ya se deberían haber observado indicios indirectos de ella (en la física del quark top, en la física el sabor (mesones B) y/o en la física del Higgs). Quizás se observen los primeros indicios de su existencia en el Run 2, pero no me parece que vaya a ser decisivo. Quizás la supersimetría se haga esperar hasta el Run 3, o incluso hasta el Run 4 (si es que la supersimetría a baja energía existe en la Naturaleza). Hay que ser pacientes.

En resumen, una bonita infografía para imprimir a todo color y colgar en la pared de tu colegio, instituto o facultad.

La entrada LHC 2.0: Infografía en Nature fue escrita en La Ciencia de la Mula Francis.

Entradas relacionadas:
  1. El estudio del campo de Higgs gracias al bosón de Higgs
  2. Francis en Trending Ciencia: El Higgs invisible
  3. Sobre la posible violación del número leptónico gracias al bosón de Higgs
Categorías: Mundo Matemático

Los cristales fotónicos y el cambio de color de los camaleones

A Mula Francis - Mér, 2015-03-11 01:43

Los cristales fotónicos podrían ser responsables de los rápidos cambios de color de los camaleones. Al menos el camaleón pantera (Furcifer pardalis) cambia de color gracias a una red activa de nanocristales de guanina en la superficie de los iridóforos de su piel. Así lo indica un estudio basado en microscopia, videografía fotométrica y simulación por ordenador mediante de cristales fotónicos.

Un cristal fotónico es un material microestructurado (a veces nanoestructurado) cuyo índice de refracción (efectivo) varía de forma periódica en el espacio y/o el tiempo. En cierto sentido son los equivalentes ópticos a los materiales cristalinos pues interaccionan con los fotones de manera similar a como lo hacen los electrones en estos últimos. Los ópalos, las alas de algunas mariposas, las diatomeas y muchos otros sistemas naturales se comportan como cristales fotónicos. Los físicos Eli Yablonovitch y Sajeev John son firmes candidatos al Premio Nobel por haber introducido el concepto de cristales fotónicos en 1987.

Toda una agradable sorpresa que los camaleones presenten cristales fotónicos en su piel. El artículo es Jérémie Teyssier et al., “Photonic crystals cause active colour change in chameleons,” Nature Communications 6: 6368, 10 Mar 2015, doi: 10.1038/ncomms7368.

Esta figura ilustra el cambio de color normalizado (descontando el nivel de luz y el efecto de la cámara) en el formato RGB durante el cambio del estado relajado (t = 0 s) al excitado (t = 60 s). Observa como la componente azul deja de ser dominante, pasando a serlo la componente roja, con una fuerte contenido de la verde (recuerda que el color amarillo es la suma aditiva de rojo y verde). Observa también como el animal hincha su musculatura al excitarse, estirando la piel y con ella las membranas de las células de su epidermis. Este proceso hace pensar que el mecanismo del cambio de color no es bioquímico sino biofísico.

Este vídeo de youtube muestra varios ejemplos de cambios de calor, a cámara lenta, así como el cambio de color de células individuales. Los cromatóforos son las células con pigmentos que se encuentran en muchos seres vivos. Los iridóforos son los comatóforos cuyos pigmentos son iridiscentes. La iridiscencia es el fenómeno óptico asociado al cambio del tono o color de la luz reflejada en función del ángulo con el que se mira, o por un cambio en el ángulo de la superficie reflectora. Los iridóforos de los camaleones se dividen en dos tipos: los superficiales, S-iridóforos, cercanos a la epidermis, y los profundos, D-iridóforos, en la dermis interior. Los S-iridóforos son responsables de los cambios rápidos de color en el espectro visible y tienen la estructura de una red triangular de nanocristales de guanina. Los D-iridóforos reflejan sobre todo la luz del infrarrojo cercano (700–1400 nm), siendo su misión regular la temperatura bajo una radiacióin solar intensa.

Los machos del camaleón pantera de Madagascar presentan tonos de color verdosos (con fuerte componente azul) cuando están relajados que se vuelven amarillentos (con fuerte componente verde y roja) cuando están excitados. Esta figura (parte izquierda) muestra la evolución del cambio de color en el diagrama de cromaticidad de la CIE (este diagrama de color elimina las componentes de saturación e intensidad del color). En la parte derecha de la figura se muestra la red de los nanocristales de guanina que se encuentran en la membrana de los S-iridóforos. Estos cristales tienen un diámetro de 127,4 ± 17,8 nm (la barra de la escala en blanco tiene un tamaño de 200 nm). Los D-iridóforos contienen cristales de guanina de mayor tamaño (longitud 200–600 nm, altura 90–150 nm) en una distribución más desorganizada (compara la parte (e) de la figura con la parte (d) de la misma).

Los cristales de guanina tienen un índice de refracción de 1,83, mientras que el del citoplasma de los iridóforos es de 1,33. Como se trata de nanocristales su tamaño es inferior a la longitud de onda de la luz visible (entre 300 y 700 nm). Por tanto, para la luz visible el índice de refracción efectivo de la superficie de los iridóforos para la luz visible varía en función de la proporción entre nanocristales y citoplasma. En estado relajado (ver parte (a) izquierda de la figura), los nanocristales están más cercas y el índice de refracción efectivo es más próximo al de la guanina, con lo que la reflectividad en el espectro visible es mayor para las longitudes de onda azules. En estado excitado (ver parte (b) derecha de la figura), la piel está más estirada, los iridóforos están más hinchados y los nanocristales están más separados, por lo que el índice de refracción efectivo es más bajo (más cercano al del citoplasma), con lo quela reflectividad en el espectro visible para colores verdes y rojos crece. La biofísica, no la bioquímica, explica el cambio de color de los camaleones, como le he dicho a mis alumnos de bioquímica.

Los cambios de color han sido registrados in vivo mediante vídeos de alta resolución (obtenidos con cámaras fotográficas cuyas imágenes son postprocesadas para su uso en fotometría RGB; el elemento clave es la normalización de los colores para su cuantificación precisa). Estos resultados han sido confirmados ex vivo usando muestras en laboratorio (que gracias a microscopios ópticos permiten seguir el cambio del color reflejado por células individuales). Finalmente, se han usado simulaciones por ordenador (usando software estándar para cristales fotónicos); estas simulaciones han permitido obtener en detalle el espectro de la iridiscencia de los iridóforos.

Finalmente, los autores del estudio han observado al microscopio los iridóforos de la piel de otras especies de camaleones y de geckos observando cristales fotónicos similares. Ello les hace sugerir la hipótesis de que estos animales usan la física de los cristales fotónicos para sus rápidos cambios de color. Por supuesto, serán necesarios futuros estudios que confirmen esta hipótesis. Pero, en mi opinión, el nuevo estudio es muy sugerente (sobre todo para los que hemos estudiado cristales fotónicos, aunque yo lo he hecho en fibras ópticas estrechadas).

La entrada Los cristales fotónicos y el cambio de color de los camaleones fue escrita en La Ciencia de la Mula Francis.

Entradas relacionadas:
  1. El píxel ideal: Nanocubos de plata distribuidos al azar sobre una nanocapa de oro recubierta de polímero
  2. Noticias breves de ciencia que te pueden interesar
  3. Gotas autopropulsadas por ATP al ser recubiertas por un gel de microtúbulos y quinesina
Categorías: Mundo Matemático

El gravitón nexus de Stuart Marongwe

A Mula Francis - Mar, 2015-03-10 18:36

El universo está hecho de espaciotiempo y campos cuánticos. El sueño de muchos físicos es desarrollar una teoría cuántica de la gravedad. Una unificación de la descripción clásica del espaciotiempo de la teoría general de la relatividad de Einstein y de las teorías cuánticas de campos descritas por el modelo estándar de la física de partículas. Stuart Marongwe, aka @marongwe_stuart, licenciado en física y electrónica en La Habana, Cuba, profesor de física en Bostwana, ha publicado tres artículos que han tenido cierto eco mediático. En ellos propone una teoría clásica que describe un espaciotiempo discreto a la que llama nexus. Permíteme unos comentarios breves sobre dicha teoría.

Puedes leer una glosa de las ideas de Marongwe en “Black holes and dark sector explained by quantum gravity,” Science Daily, 06 Mar 2015, y en “Black holes and the dark sector explained by quantum gravity,” Phys.Org, 06 Mar 2015. Por supuesto la fuente es la misma, el servicio de noticias de la editorial World Scientific que ha publicado su último artículo.

Los artículos que he leído son Stuart Marongwe, “Nexus: A Quantum Theory of Space-Time, Gravity and the Quantum Vacuum,” International Journal of Astronomy and Astrophysis 03: 236-242, 2013, doi: 10.4236/ijaa.2013.33028; “The Nexus graviton: A quantum of Dark Energy and Dark Matter,” International Journal of Geometric Methods in Modern Physics 11: 1450059, 2014, doi: 10.1142/S0219887814500595; y “The Schwarzschild solution to the Nexus graviton field,” International Journal of Geometric Methods in Modern Physics, In Press, 27 Feb 2015, doi: 10.1142/S0219887815500425.

La teoría nexus de la gravedad no es una teoría cuántica de la gravedad. La idea de esta teoría clásica es que el espaciotiempo es discreto. Se llama gravitón nexus a cada unidad elemental (cuanto) de espaciotiempo. El gravitón nexus no es una partícula elemental (como el gravitón), sino que es una partícula compuesta de cuatro fermiones de Weyl. La idea recuerda a una gravedad con coordenadas no conmutativas. El elemento de espacio tiempo Δx se sustituye por una matriz 4×4 que sigue un álgebra de Clifford (como las matrices gamma en la teoría de Dirac para el electrón).

Lo cuántico de la teoría de Marongwe es usar operadores de creación y aniquilación de gravitones nexus cuyos autovalores son intervalos de momento-energía Δp de tal forma que se cumple el principio de indeterminación de Heisenberg Δx Δp ≈ ℏ. No se deriva esta expresión que se asume ad hoc. Además, se asume ad hoc que la energía máxima del gravitón nexus cumple ΔEmax Δt ≈ ℏ. En apariencia estas ideas son cuánticas, pero se introducen ad hoc en el contexto de una formulación que es clásica. Por tanto, la teoría se asemeja de lejos a algo cuántico pero es puramente clásica.

Como es obvio, se asume que la energía de Planck es la máxima para el gravitón nexus. Gracias a ello el intervalo de tiempo mínimo es el de Planck y el radio del volumen de espacio elemental asociado al gravitón nexus coincide con la longitud de Planck. Además, se asume que la energía del gravitón nexus está discretizada en unidades de la constante de Hubble multiplicada por la constante de Planck (E = n ℏ Ho). ¿Por qué? Porque sí. Como resultado de esta decisión el espaciotiempo de nuestro universo está formado por 1060 gravitones nexus. Supongo que recordarás la estimación más famosa del número de partículas elementales del universo: 1080 (obviamente Marongwe omite este número en sus artículos).

¿Qué es la materia oscura en la gravedad nexus? Estados excitados de los gravitones nexus (con energía n ℏ Ho). Ad hoc, se asume que estos estados excitados se comportan como partículas que se mueven a la velocidad v=c/n. Has leído bien, Marongwe asume que la materia oscura es caliente (contradiciendo todas las observaciones cosmológicas).

¿Qué es la energía oscura en la gravedad nexus? La constante cosmológica. Inspirado por la ecuación de Friedman, Marongwe asume que Λ = 3 Ho²/c². Has leído bien, todo el universo es energía oscura, ya que ΩΛ = 1 (contradiciendo las observaciones cosmológicas que apuntan a ΩΛ ≈ 0,7).

¿Qué es la materia bariónica en la gravedad nexus? Meter algo que no cabe es díficil, pero por fortuna para Marongwe Ωb ≈ 0,04 es un número pequeño. Se toma la solución de Schwarzschild de las ecuaciones de Einstein pero con la masa sustituida por la suma de la energía del espaciotiempo vacío (Mvac) y de una pequeña perturbación bariónica (Mbar). Se asume que es exacta la relación empírica de Tully-Fisher (que relaciona la luminosidad de una galaxia con la velocidad de sus estrellas). A partir de esta relación se estima la cantidad de masa bariónica típica de una galaxia. Y de ahí usando la idea del problema de la coincidencia cósmica se estima que la cantidad de materia bariónica debe ser una pequeña contribución a la cantidad de energía oscura. Un retruque argumental que le deja a uno ojiplático.

¿Unifica todas las interacciones la gravedad nexus? Bueno, sus tres artículos no le dan espacio para desvelarnos todos los secretos del universo. Por ello se limita a afirmar que los cuatro fermiones de Weyl que forman el gravitón deben dar cuenta de todas las partículas conocidas (fermiones y bosones). Nos deja con la miel en los labios y sugiere que en futuros artículos nos desvelará cómo lograrlo.

Hay muchas observaciones que contradicen los resultados de Marongwe. Por ejemplo, su teoría viola la relatividad especial y predice que la velocidad de los fotones debe ser lineal con la energía, algo descartado por los fotones ultraenergéticos observados por el telescopio espacial de rayos gamma Fermi. Su teoría no cumple el principio de equivalencia, que ha sido verificado al menos en una parte por billón. Y muchas más cosas. Pero lo más curioso es que su teoría nexus no es una teoría cuántica de la gravedad, aunque algunos medios así lo hayan afirmado. No basta decir que el espaciotiempo es discreto y asumir ad hoc las relaciones de indeterminación de Heinsenberg para que una teoría de campos sea cuántica. En mi opinión, el joven Marongwe no ha estudiado teoría cuántica de campos y no tiene ni idea de lo que debe ser una teoría cuántica de la gravedad.

En resumen, olvida la teoría nexus de Marongwe. Salvo que te quieras reír un rato con sus disparates, no merece la pena molestarse en leer sus artículos.

La entrada El gravitón nexus de Stuart Marongwe fue escrita en La Ciencia de la Mula Francis.

Entradas relacionadas:
  1. Por una apuesta aparece “Poker Face” de Lady Gaga en el título de un artículo en Physical Review D
  2. Garrett Lisi, el físico surfero, logra publicar un artículo en Scientific American sobre su teoría graviGUT basada en E8
  3. La explicación de la primera pizarra de Sheldon en la serie “Big Bang”
Categorías: Mundo Matemático
Distribuir contido